Deconvolution with Estimated Characteristic Function of the Errors

نویسنده

  • F. COMTE
چکیده

We study the following model of deconvolution Y = X+ε with i.i.d. observations Y1, . . . , Yn and ε−1, . . . , ε−M . The (Xj)1≤j≤n are i.i.d. with density f , independent of the εj . The aim of the paper is to estimate f without knowing the density fε of the εj . We first define an estimator, for which we provide bounds for the pointwise and the integrated L-risk. We consider ordinary smooth and supersmooth noise ε with regard to ordinary smooth and supersmooth densities f . Then we present an adaptive estimator of the density of f . This estimator is obtained by penalization of a projection contrast, and yields to model selection. Lastly, we present simulation experiments to illustrate the good performances of our estimator and study from the empirical point of view the importance of theoretical constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise deconvolution with unknown error distribution

This note presents rates of convergence for the pointwise mean squared error in the deconvolution problem with estimated characteristic function of the errors. Résumé Déconvolution ponctuelle avec distribution de l’erreur inconnue. Cette note présente les vitesses de convergence pour le risque quadratique ponctuel dans le problème de déconvolution avec fonction caractéristique des erreurs estimée.

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Assessment of deconvolution technique for diagnosis of hydronephrosis in infants (under 6 months) [persian]

Introduction: Hydronephrosis is one of the major causes of referring infants for nuclear medicine investigation. Renal dynamic study is the most reliable investigation for such children. However direct evaluation of renogram leads to generation of parameters that have no physiological interpretation. The configuration of renogram is very much dependent upon the rate at which radiopharmace...

متن کامل

Deconvolving a Density from Contaminated Dependent Observations*

The paper studies the performance of deconvoluting kernel density estimators for estimating the marginal density of a linear process. The data stem from the linear process and are partially, respectively fully contaminated by lid errors with a known distribution. If 1-p denotes the proportion of contaminated observations (and it is , of course, unknown which observations are contaminated and wh...

متن کامل

Evaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults

Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008